The ever-increasing popularity of mobile devices (e.g., mobile phones and smart watches) has created a variety of crowdsourcing applications by employing the massive and distributed mobile computing resources. Typically, a task requester sends his/her task request and constraint conditions to a crowdsourcing platform, and then the crowdsourcing platform is responsible for finding a set of appropriate workers (e.g., mobile users) from massive candidates to satisfy the task request. However, for a mobile crowdsourcing task being executed by a set of workers, a pre-selected worker may become unavailable due to various exceptions. In this situation, it is significant for the crowdsourcing platform to quickly find another similar worker to replace the unavailable worker so as to smooth the crowdsourcing process. However, the above exception handling process is often challenging as candidate workers are often not willing to release their sensitive information to the platform due to privacy concerns. In view of this challenge, in this paper, a novel privacy-preserving exception handling approach, named ExH Simhash , is put forward based on Simhash technique. Finally, through a set of simulated experiments, we validate the feasibility of ExH Simhash in terms of substitution equivalence and computational time.