As the in-depth exploration of oceans continues, the accurate and rapid detection of fish, bionics and other intelligent bodies in an underwater environment is more and more important for improving an underwater defense system. Because of the low accuracy and poor real-time performance of target detection in the complex underwater environment, we propose a target detection algorithm based on the improved SSD. We use the ResNet convolution neural network instead of the VGG convolution neural network of the SSD as the basic network for target detection. In the basic network, the depthwise-separated deformable convolution module proposed in this paper is used to extract the features of an underwater target so as to improve the target detection accuracy and speed in the complex underwater environment. It mainly fuses the depthwise separable convolution when the deformable convolution acquires the offset of a convolution core, thus reducing the number of parameters and achieving the purposes of increasing the speed of the convolution neural network and enhancing its robustness through sparse representation. The experimental results show that, compared with the SSD detection model that uses the ResNet convolution neural network as the basic network, the improved SSD detection model that uses the depthwise-separated deformable convolution module improves the accuracy of underwater target detection by 11 percentage points and reduces the detection time by 3 ms, thus validating the effectiveness of the algorithm proposed in the paper.
With the widespread use of Internet of Things and cloud computing in smart cities, various security and privacy challenges may be encountered.The most basic problem is authentication between each application, such as participating users, IoT devices, distributed servers, authentication centers, etc. In 2020, Kang et al. improved an authentication protocol for IoT-Enabled devices in a distributed cloud computing environment and its main purpose was in order to prevent counterfeiting attacks in Amin et al.’ protocol, which was published in 2018. However, We found that the Kang et al.’s protocol still has a fatal vulnerability, that is, it is attacked by offline password guessing, and malicious users can easily obtain the master key of the control server. In this article, we extend their work to design a lightweight pseudonym identity based authentication and key agreement protocol using smart card. For illustrating the security of our protocol, we used the security protocol analysis tools of AVISPA and Scyther to prove that the protocol can defend against various existing attacks. We will further analyze the interaction between participants authentication path to ensure security protection from simulated attacks detailedly. In addition, based on the comparison of security functions and computing performance, our protocol is superior to the other two related protocols. As a result, the enhanced protocol will be efficient and secure in distributed cloud computing architecture for smart city.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.