Periparturient dairy cows experience metabolic challenges that result in a negative energy balance (EB) and a range of postpartum health problems. To compensate for the negative EB, cows mobilize fatty acids from adipose tissues, which can lead to fatty liver disease, a periparturient metabolic disorder. Flavonoids, such as quercetin (Q), are polyphenolic substances found in all higher plants and have hepatoprotective potential and the ability to prevent or reduce lipid accumulation in the liver. In ruminants, few studies on the metabolic effects of Q are available, and thus this study was conducted to determine whether Q has beneficial effects on EB, lipid metabolism, and hepatoprotective effects in periparturient dairy cows. Quercetin was supplemented intraduodenally to circumvent Q degradation in the rumen. Cows (n=10) with duodenal fistulas were monitored for 7wk. Beginning 3wk before expected calving, 5 cows were treated with 100mg of quercetin dihydrate per kilogram of body weight daily in a 0.9% sodium chloride solution for a total period of 6wk, whereas the control cows received only the sodium chloride solution. The plasma flavonoid levels were higher in the Q-treated cows than in the control cows. A tendency for higher postpartum (pp) than antepartum (ap) plasma flavonoid levels was observed in the Q-treated cows than in the controls, which was potentially caused by a reduced capacity to metabolize Q. However, the metabolic status of the Q-treated cows did not differ from that of the control cows. The pp increases in plasma aspartate aminotransferase and glutamate dehydrogenase activities were less in the Q-treated cows than in the control cows. The Q had no effect on energy expenditures, but from ap to pp the cows had a slight decline in respiratory quotients. Irrespective of the treatment group, the oxidation of fat peaked after calving, suggesting that the increase occurred because of an increased supply of fatty acids from lipomobilization. In conclusion, supplementation with Q resulted in lower pp plasma aminotransferase and glutamate dehydrogenase, which indicated reduced liver damage. However, the direct effects of Q on the liver and the implications for animal performance remain to be investigated.