This chapter presents some insights into the modeling of different Multi-Gate SOI MOSFET structures, and in particular Double-Gate MOSFETs (DG MOSFETs) and Tri-Gate MOSFETs (TGFETs). For long-channel case an electrostatic model can be developed from the solution of the 1D Poisson's equation (in the case of DG MOSFETs) and the 2D Poisson's equation in the section perpendicular to the channel (in the case of TGFETs). Allowing it to be incorporated in quasi-2D compact models. For short-channel devices a model can be derived from a 2D (in the case of DG MOSFETs) or a 3D (in the case of TGFETs) electrostatic analysis. The models were successfully compared with 2D and 3D TCAD simulations and, in some cases, experimental measurements. Short-channel effects, such as subthrehold slope degradation, threshold voltage roll-off and DIBL were accurately reproduced.