Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. J-J. Rouby, Q. Lu, S. Vieira. #ERS Journals Ltd 2003. ABSTRACT: Pressure/volume (P/V) curves can be measured by static methods, constant or sinusoidal flow methods and the dynostatic method that allows a breath-tobreath determination of P/V curves. Recent ventilators are equipped with specific flow generators and software aimed at obtaining P/V curves without disconnecting the patient from the ventilator.The most recent generation of computed tomography scanners allows the quantitative determination of lung aeration, lung volumes (gas and tissue), alveolar recruitment and lung overinflation of the whole lung. In the supine position, the acute respiratory distress syndrome (ARDS) lung is characterised by an increase in lung tissue that predominates in upper lobes and a massive loss of aeration that predominates in lower lobes.In a minority of ARDS patients, the loss of aeration is homogeneously distributed. The overall lung volume of upper lobes is preserved suggesting an alveolar floodinginduced loss of aeration. In contrast, the overall lung volume of lower lobes is reduced because the heart and the abdomen exert an external compression that contributes to the loss of aeration. The P/V curve is a lung recruitment curve and the chord compliance indicates the potential for recruitment. In such patients, alveolar recruitment resulting from positive end-expiratory pressure is not accompanied by lung overinflation.In a majority of acute respiratory distress syndrome patients, upper lobes remain partially or totally aerated despite a marked regional increase in lung tissue. The upper lobes9 overall lung volume is either normal or increased, suggesting that the lung does not collapse under its own weight as generally believed. In lower lobes, the overall lung volume is reduced because the heart and the abdomen exert an external compression that contributes to the loss of aeration. The pressure/volume curve is influenced by the recruitment of poorly and nonaerated lung regions and by the mechanical properties of the part of the lung remaining aerated. In such patients, alveolar recruitment resulting from positive end-expiratory pressure w10 cmH 2 O is preceded and accompanied by lung overinflation. Eur Respir J 2003; 22: Suppl. 42, 27s- Respiratory pressure/volume (P/V) curves can be easily obtained at the bedside in critically ill patients whose lungs are mechanically ventilated. Many ventilators are now equipped with flow generators and software that allow the obtention and the analysis of the P/V curve without disconnecting the patient from mechanical ventilation. Hypothesis and concepts serving for interpreting the P/V curves of patients with acute respiratory distress syndrome (ARDS) have been deeply modified during the past 15 yrs. Initially believed to reflect the mechanical properties of the "baby" lung [1], the P/V curve is now rather considered as a lung recruitment curve [2] which is markedly influenced by the regiona...