A soft x-ray (SXR) diagnostic to measure electron temperature on the Madison Symmetric Torus using two complementary methods is presented. Both methods are based on the double-foil technique, which calculates electron temperature via the ratio of SXR bremsstrahlung emission from the plasma in two different energy ranges. The tomographic emissivity method applies the double-foil technique to a tomographic reconstruction of SXR emissivity, creating a two-dimensional map of temperature throughout the plasma. In contrast, the direct brightness method applies the double-foil technique directly to the measured brightness and generates vertical and horizontal radial profiles. Extensive modeling demonstrates advantages and limitations in both techniques. For example, although the emissivity technique provides a two-dimensional mapping of temperature, its reliance on multiple tomographic inversions introduces some artifacts into the results. On the other hand, the more direct brightness technique avoids these artifacts but is only able to provide a radial profile of electron temperature.