An overview of recent results from the MST programme on physics important for the advancement of the reversed field pinch (RFP) as well as for improved understanding of toroidal magnetic confinement more generally is reported. Evidence for the classical confinement of ions in the RFP is provided by analysis of impurity ions and energetic ions created by 1 MW neutral beam injection (NBI). The first appearance of energetic-particle-driven modes by NBI in a RFP plasma is described. MST plasmas robustly access the quasi-single-helicity state that has commonalities to the stellarator and 'snake' formation in tokamaks. In MST the dominant mode grows to 8% of the axisymmetric field strength, while the remaining modes are reduced. Predictive capability for tearing mode behaviour has been improved through nonlinear, 3D, resistive magnetohydrodynamic computation using the measured resistivity profile and Lundquist number, which reproduces the sawtooth cycle dynamics. Experimental evidence and computational analysis indicates two-fluid effects, e.g., Hall physics and gyro-viscosity, are needed to understand the coupling of parallel momentum transport and current profile relaxation. Large Reynolds and Maxwell stresses, plus separately measured kinetic stress, indicate an intricate momentum balance and a possible origin for MST's intrinsic plasma rotation. Gyrokinetic analysis indicates that micro-tearing modes can be unstable at high beta, with a critical gradient for the electron temperature that is larger than for tokamak plasmas by roughly the aspect ratio.
An overview of recent results from the MST reversed field pinch programme is presented. With neutral beam injection, bursty energetic particle (EP) modes are observed. The profiles of the magnetic and density fluctuations associated with these EP modes are measured using a far infrared interferometer-polarimeter. Equilibrium reconstructions of the quasi-single-helicity 3D helical state are provided by the V3FIT code that now incorporates several of MST's advanced diagnostics. The orientation of the helical structure is controlled using a new resonant magnetic perturbation technique. Gyrokinetic simulations based on experimental equilibria predict unstable trapped-electron modes (TEMs), and small-scale density fluctuations are detected in improvedconfinement plasmas with TEM-like features. Upgraded pellet injection permits study of density and beta limits over MST's full range of operation, and an MST-record line-average density of 0.9 × 10 20 m 3 (n/n G = 1.4) has been obtained. Impurity ion temperature measurements reveal a charge-to-mass-ratio dependence in the rapid heating that occurs during a sawtooth crash. Runaway of NBI-born fast ions during the impulsive sawtooth event agrees with test-particle theory. Magnetic self-organization studies include measurements of the dynamo emf with an applied ac inductive electric field using oscillating field current drive.
A soft x-ray (SXR) diagnostic to measure electron temperature on the Madison Symmetric Torus using two complementary methods is presented. Both methods are based on the double-foil technique, which calculates electron temperature via the ratio of SXR bremsstrahlung emission from the plasma in two different energy ranges. The tomographic emissivity method applies the double-foil technique to a tomographic reconstruction of SXR emissivity, creating a two-dimensional map of temperature throughout the plasma. In contrast, the direct brightness method applies the double-foil technique directly to the measured brightness and generates vertical and horizontal radial profiles. Extensive modeling demonstrates advantages and limitations in both techniques. For example, although the emissivity technique provides a two-dimensional mapping of temperature, its reliance on multiple tomographic inversions introduces some artifacts into the results. On the other hand, the more direct brightness technique avoids these artifacts but is only able to provide a radial profile of electron temperature.
Many plasma diagnostics contain complementary information. For example, the double-foil soft x-ray system (SXR) and the Thomson Scattering diagnostic (TS) on the Madison Symmetric Torus both measure electron temperature. The complementary information from these diagnostics can be combined using a systematic method based on integrated data analysis techniques, leading to more accurate and sensitive results. An integrated data analysis tool based on Bayesian probability theory was able to estimate electron temperatures that are consistent with both the SXR and TS diagnostics and more precise than either. A Markov Chain Monte Carlo analysis to increase the flexibility of the tool was implemented and benchmarked against a grid search method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.