The segmentation of anterior Lamina Cribrosa surface from the OCT image is an essential task for analysis of glaucomatous damage. A Bayesian method is used to segment LC surface whereas prior knowledge about shape and position of LC layer is obtained by the non local Markov Random field and K-means segmentation. The Metropolis-Hastings (MH) algorithm provides autocorrelation graph and distribution of samples from a probability distribution. By using this technique acceptance probability is calculated. Finally, the LC layer is analysed whether it is normal or abnormal. This technique provides an accuracy of 96.7%