Mammography is an operative procedure for early detection of cancer present in breast. However, the pathological changes of the breast are difficult to interpret from low contrast mammograms. This research proposes a method to enhance the contrast of the mammogram that uses Non-subsampled contourlet transform (NSCT) based edge information. Instead of a directional filter bank in the conventional NSCT structure, this paper uses multiscale non-separable edge filters. These edge filters outputs intrinsic edge structure information based on simplified hyperbolic tangent function applied with two polarized schemes. This edge information further used to improve the local contrast. Adaptive histogram equalization (AHE) also used to increase the overall contrast of mammogram. Improved detection of microcalcification (MC) from enhanced mammogram images shows the success of this algorithm. This method has better enhancement measure (EME) than AHE and unsharp based mammogram enhancement method.
Contrast limited adaptive histogram equalization is applied to obtain local contrast enhancement.retinal blood vessels are segmented by minimum spanning superpixel tree detector.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.