2020
DOI: 10.3389/fpsyg.2020.02190
|View full text |Cite
|
Sign up to set email alerts
|

Contrasting Classical and Machine Learning Approaches in the Estimation of Value-Added Scores in Large-Scale Educational Data

Abstract: There is no consensus on which statistical model estimates school value-added (VA) most accurately. To date, the two most common statistical models used for the calculation of VA scores are two classical methods: linear regression and multilevel models. These models have the advantage of being relatively transparent and thus understandable for most researchers and practitioners. However, these statistical models are bound to certain assumptions (e.g., linearity) that might limit their prediction accuracy. Mach… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
12
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1
1

Relationship

2
5

Authors

Journals

citations
Cited by 13 publications
(14 citation statements)
references
References 52 publications
0
12
0
2
Order By: Relevance
“…To solve this difficulty in comparing schools, researchers have drawn on VA scores that control for student composition factors (e.g., students' language background, SES, and prior achievement) and single out the "net effect" of school effectiveness (21). VA scores can be calculated in different ways in terms of variables and choice of statistical models (9,10,22). However, the underlying idea, which originated from economics (23), is the same for all of these statistical models: When controlling for all available background variables and prior achievement, all gains in achievement that are left are likely to be due to teacher or school effectiveness (for an in-depth literature review of research on teacher and school VA scores, please see 9,17,23).…”
Section: Value-added Models and Their Usementioning
confidence: 99%
See 1 more Smart Citation
“…To solve this difficulty in comparing schools, researchers have drawn on VA scores that control for student composition factors (e.g., students' language background, SES, and prior achievement) and single out the "net effect" of school effectiveness (21). VA scores can be calculated in different ways in terms of variables and choice of statistical models (9,10,22). However, the underlying idea, which originated from economics (23), is the same for all of these statistical models: When controlling for all available background variables and prior achievement, all gains in achievement that are left are likely to be due to teacher or school effectiveness (for an in-depth literature review of research on teacher and school VA scores, please see 9,17,23).…”
Section: Value-added Models and Their Usementioning
confidence: 99%
“…and tackled, such as creating a consensus on how to best estimate VA scores (9,10,17). The most widely used models are the multilevel and linear regression models, with the former outperforming the latter (19,20).…”
Section: Value-added Models and Their Usementioning
confidence: 99%
“…Our society is challenged by the increasing proliferation of opaque algorithmic systems, that apply black box machine learning algorithms, making use of large volumes of data to facilitate decision making in a wide variety of sensitive applications. We can see this phenomena in every aspect of our lives, including education (see for instance a work about estimating school value-added scores (Levy et al 2190;Prinsloo 2020) and a recent survey about the application of machine learning in education (Kučak et al 2018)). These systems are based on complex machine learning algorithms that are trained over large amounts of data in order to provide their prediction or classification of new cases.…”
Section: Introductionmentioning
confidence: 99%
“…Como consecuencia de lo anterior, en la actualidad, son diversos los análisis focales comparativos realizados en torno a las competencias, entre las que se incluyen la comprensión lectora avanzada (Hershkovitz y Alexandron, 2020; Levy et al, 2020;Wang, 2020). Estas investigaciones se centran, en su mayoría, en el análisis de datos masivos obtenidos de pruebas de organismos internacionales procedentes de diferentes países.…”
Section: Introductionunclassified
“…Igualmente, otros estudios examinan las variables psicoeducativas relacionadas con la CLA tales como el academic engagement (Durón-Ramos et al, 2020) o el compromiso organizacional y su relación con la eficacia docente y la autoestima colectiva y su influjo en los resultados académicos (Chung, 2019) o el e-learning engagement (Gao et al, 2021); la motivación de logro y para el aprendizaje como variables claves para la consecución de resultados y mejoras en las competencias (Lai et al, 2018;Rodríguez et al, 2019); las atribuciones y las estrategias de afrontamiento ante las dificultades en el aprendizaje de competencias u otros (Morales, 2018;Song et al, 2020); los estilos de aprendizaje dentro de modelos diversos que median en los resultados en las competencias a partir de los cambios que se introducen en las metodologías docentes y en los sistemas de evaluación (Gutiérrez, 2018); la inteligencia emocional como papel mediador en el compromiso con la mejora de competencias (Merino et al, 2018); la autorregulación en la lectura y la teoría de la autorregulación incluyendo la automotivación como factores nucleares en el despliegue de las competencias (Cheng y Lin, 2020;Li et al, 2018;Qi, 2021;Suárez et al, 2019); las habilidades emocionales inter e intrapersonales de los estudiantes que juegan un papel relevante mediando en la pericia con las competencias (Almerich et al, 2018;Morales, 2018); el pensamiento crítico y creativo que introduce flexibilidad y eficiencia en el dominio de competencias (Almerich et al, 2018); el uso de los social media como arma poderosísima y cada vez más esencial en la conquista del dominio de las competencias genéricas y específicas incluyendo todo el campo de la competencia digital y la digital literacy pasando de un uso de las herramientas para el ocio a un uso cada vez más educativo (García-Martín y García, 2013); los resultados académicos (Doménech et al, 2017;Karagiannopoulou et al, 2018); la orientación a metas académicas, las actitudes y la ansiedad ante la lectura (Nootens et al, 2019;Zhou, 2017); el papel de los conocimientos previos (Dong et al, 2020); el clima y la mentalidad académica (Kearney et al, 2020); la autoeficacia creativa (He et al, 2020); la autoeficacia y aceptación de la tecnología móvil en un modelo estructural complejo (Levy et al, 2020); incluyendo el papel crec...…”
Section: Introductionunclassified