Abstract. Provision of personalized recommendations to users requires accurate modeling of their interests and needs. This paper proposes a general framework and specific methodologies for enhancing the accuracy of user modeling in recommender systems by importing and integrating data collected by other recommender systems. Such a process is defined as user models mediation. The paper discusses the details of such a generic user modeling mediation framework. It provides a generic user modeling data representation model, demonstrates its compatibility with existing recommendation techniques, and discusses the general steps of the mediation. Specifically, four major types of mediation are presented: cross-user, cross-item, cross-context, and crossrepresentation. Finally, the paper reports the application of the mediation framework and illustrates it with practical mediation scenarios. Evaluations of these scenarios demonstrate the potential benefits of user modeling data mediation, as in certain conditions it allows improving the quality of the recommendations provided to the users.
Collaborative Filtering (CF) is a powerful technique for generating personalized predictions. CF systems are typically based on a central storage of user profiles used for generating the recommendations. However, such centralized storage introduces a severe privacy breach, since the profiles may be accessed for purposes, possibly malicious, not related to the recommendation process. Recent researches proposed to protect the privacy of CF by distributing the profiles between multiple repositories and exchange only a subset of the profile data, which is useful for the recommendation. This work investigates how a decentralized distributed storage of user profiles combined with data modification techniques may mitigate some privacy issues. Results of experimental evaluation show that parts of the user profiles can be modified without hampering the accuracy of CF predictions. The experiments also indicate which parts of the user profiles are most useful for generating accurate CF predictions, while their exposure still keeps the essential privacy of the users.
The study of intelligent user interfaces and user modeling and adaptation is well suited for augmenting educational visits to museums. We have defined a novel integrated framework for museum visits and claim that such a framework is essential in such a vast domain that inherently implies complex interactivity. We found that it requires a significant investment in software and hardware infrastructure, design and implementation of intelligent interfaces, and a systematic and iterative evaluation of the design and functionality of user interfaces, involving actual visitors at every stage. We defined and built a suite of interactive and user-adaptive technologies for museum visitors, which was then evaluated at the Buonconsiglio Castle in Trento, Italy: (1) animated agents that help motivate visitors and focus their attention when necessary, (2) automatically generated, adaptive video documentaries on mobile devices, and (3) automatically generated post-visit summaries that reflect the individual interests of visitors as determined by their behavior and choices during their visit. These components are supported by underlying user modeling and inference mechanisms that allow for adaptivity and personalization. Novel software infrastructure allows for agent connectivity and fusion of multiple positioning data streams in the museum space. We conducted several experiments, focusing on various aspects of PEACH. In one, conducted 123 258 O. Stock et al.with 110 visitors, we found evidence that even older users are comfortable interacting with a major component of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.