Adaptive hypermedia is a new direction of research within the area of adaptive and user model-based interfaces. Adaptive hypermedia (AH) systems build a model of the individual user and apply it for adaptation to that user, for example, to adapt the content of a hypermedia page to the user's knowledge and goals, or to suggest the most relevant links to follow. AH systems are used now in several application areas where the hyperspace is reasonably large and where a hypermedia application is expected to be used by individuals with different goals, knowledge and backgrounds. This paper is a review of existing work on adaptive hypermedia. The paper is centered around a set of identified methods and techniques of AH. It introduces several dimensions of classification of AH systems, methods and techniques and describes the most important of them.
Keyphrase provides highly-summative information that can be effectively used for understanding, organizing and retrieving text content. Though previous studies have provided many workable solutions for automated keyphrase extraction, they commonly divided the to-be-summarized content into multiple text chunks, then ranked and selected the most meaningful ones. These approaches could neither identify keyphrases that do not appear in the text, nor capture the real semantic meaning behind the text. We propose a generative model for keyphrase prediction with an encoder-decoder framework, which can effectively overcome the above drawbacks. We name it as deep keyphrase generation since it attempts to capture the deep semantic meaning of the content with a deep learning method. Empirical analysis on six datasets demonstrates that our proposed model not only achieves a significant performance boost on extracting keyphrases that appear in the source text, but also can generate absent keyphrases based on the semantic meaning of the text. Code and dataset are available at https://github.com/memray/seq2seq-keyphrase.
Adaptive hypermedia is a new direction of research within the area of adaptive and user model-based interfaces. Adaptive hypermedia (AH) systems build a model of the individual user and apply it for adaptation to that user, for example, to adapt the content of a hypermedia page to the user's knowledge and goals, or to suggest the most relevant links to follow. AH systems are used now in several application areas where the hyperspace is reasonably large and where a hypermedia application is expected to be used by individuals with different goals, knowledge and backgrounds. This paper is a review of existing work on adaptive hypermedia. The paper is centered around a set of identified methods and techniques of AH. It introduces several dimensions of classification of AH systems, methods and techniques and describes the most important of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.