Keyphrase provides highly-summative information that can be effectively used for understanding, organizing and retrieving text content. Though previous studies have provided many workable solutions for automated keyphrase extraction, they commonly divided the to-be-summarized content into multiple text chunks, then ranked and selected the most meaningful ones. These approaches could neither identify keyphrases that do not appear in the text, nor capture the real semantic meaning behind the text. We propose a generative model for keyphrase prediction with an encoder-decoder framework, which can effectively overcome the above drawbacks. We name it as deep keyphrase generation since it attempts to capture the deep semantic meaning of the content with a deep learning method. Empirical analysis on six datasets demonstrates that our proposed model not only achieves a significant performance boost on extracting keyphrases that appear in the source text, but also can generate absent keyphrases based on the semantic meaning of the text. Code and dataset are available at https://github.com/memray/seq2seq-keyphrase.
This paper proposes a novel high-order local pattern descriptor, local derivative pattern (LDP), for face recognition. LDP is a general framework to encode directional pattern features based on local derivative variations. The n(th)-order LDP is proposed to encode the (n-1)(th) -order local derivative direction variations, which can capture more detailed information than the first-order local pattern used in local binary pattern (LBP). Different from LBP encoding the relationship between the central point and its neighbors, the LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. Both gray-level images and Gabor feature images are used to evaluate the comparative performances of LDP and LBP. Extensive experimental results on FERET, CAS-PEAL, CMU-PIE, Extended Yale B, and FRGC databases show that the high-order LDP consistently performs much better than LBP for both face identification and face verification under various conditions.
Sentence simplification aims to reduce the complexity of a sentence while retaining its original meaning. Current models for sentence simplification adopted ideas from machine translation studies and implicitly learned simplification mapping rules from normalsimple sentence pairs. In this paper, we explore a novel model based on a multi-layer and multi-head attention architecture and we propose two innovative approaches to integrate the Simple PPDB (A Paraphrase Database for Simplification), an external paraphrase knowledge base for simplification that covers a wide range of real-world simplification rules. The experiments show that the integration provides two major benefits: (1) the integrated model outperforms multiple stateof-the-art baseline models for sentence simplification in the literature (2) through analysis of the rule utilization, the model seeks to select more accurate simplification rules. The code and models used in the paper are available at https://github.com/ Sanqiang/text_simplification.
This paper presents a new Sobel-LBP, an extension of existing Local Binary Pattern (LBP), for facial image representation. The face image is filtered by Sobel operator to enhance the edge information. Sobel-LBP feature distributions are then extracted and concatenated into a spatial histogram to be used as a face descriptor. The proposed method is compared with the original LBP on both gray-level images and Gabor real and imaginary features for face recognition. The experimental results indicate that Sobel-LBP provides a significantly better performance than LBP under various conditions.
This paper proposes a novel Kernel Similarity Modeling of Texture Pattern Flow (KSM-TPF) for background modeling and motion detection in complex and dynamic environments. The Texture Pattern Flow encodes the binary pattern changes in both spatial and temporal neighborhoods. The integral histogram of Texture Pattern Flow is employed to extract the discriminative features from the input videos. Different from existing uniform threshold based motion detection approaches which are only effective for simple background, the Kernel Similarity Modeling is proposed to produce an adaptive threshold for complex background. The adaptive threshold is computed from the mean and variance of an extended Gaussian Mixture Model. The proposed KSM-TPF approach incorporates machine learning method with feature extraction method in a homogenous way. Experimental results on the publicly available video sequences demonstrate that the proposed approach provides an effective and efficient way for background modeling and motion detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.