Abstract:Representing games through their pixels offers a promising approach for building general-purpose and versatile game models. While games are not merely images, neural network models trained on game pixels often capture differences of the visual style of the image rather than the content of the game. As a result, such models cannot generalize well even within similar games of the same genre. In this paper we build on recent advances in contrastive learning and showcase its benefits for representation learning in… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.