The dynamics of sap flow in relation to plant morphology and weather conditions during reproductive growth of soybean (Glycine max. L. Merr.) influence decisions pertaining to efficient irrigation management and other inputs for high yields. Field studies began in 2017 at Marianna, Arkansas to measure moisture dynamics of soybeans during seed fill (R5 to R7) using heat balance stem flow gauges. Sap flow was highly correlated to solar radiation with maximum rates observed during beginning seed fill (R5). A solar radiation efficiency (SRE) value, calculated as hourly sap flow rate per Watt-hour of solar radiation (g/Wh 2), is proposed. The SRE relates to crop water demand and hydraulic resistance of the soil-root-stem-leaf-pod-seed pathway. SRE values ranged from 0-1.2 g/Wh 2. Soil moisture, growth stage, time of day, and weather conditions influenced the SRE, with higher values observed in the morning, late afternoon, and during R5 growth. Peak sap flows of 39 g/h at R5, 25 g/h at R6, and 3 g/h at R7 occurred. The ratio of measured sap flow to estimated crop evapotranspiration was 0.9 to 1.3 during R5 to R6.9 (maximum dry matter), but dropped to 0.2 at R7. Further research is needed to better understand late season reproductive moisture dynamics in soybeans.