The science and management of infectious disease are entering a new stage. Increasingly public policy to manage epidemics focuses on motivating people, through social distancing policies, to alter their behavior to reduce contacts and reduce public disease risk. Person-to-person contacts drive human disease dynamics. People value such contacts and are willing to accept some disease risk to gain contact-related benefits. The cost-benefit trade-offs that shape contact behavior, and hence the course of epidemics, are often only implicitly incorporated in epidemiological models. This approach creates difficulty in parsing out the effects of adaptive behavior. We use an epidemiological-economic model of disease dynamics to explicitly model the trade-offs that drive person-toperson contact decisions. Results indicate that including adaptive human behavior significantly changes the predicted course of epidemics and that this inclusion has implications for parameter estimation and interpretation and for the development of social distancing policies. Acknowledging adaptive behavior requires a shift in thinking about epidemiological processes and parameters.susceptible-infected-recovered model | R 0 | reproductive number | bioeconomics T he science and management of infectious disease is entering a new stage. The increasing focus on incentive structures to motivate people to engage in social distancing-reducing interpersonal contacts and hence public disease risk (1)-changes what health authorities need from epidemiological models. Social distancing is not new-for centuries humans quarantined infected individuals and shunned the obviously ill, but new approaches are being used to deal with modern social interactions. Scientific development of social distancing public policies requires that epidemiological models explicitly address behavioral responses to disease risk and other incentives affecting contact behavior. This paper models the role of adaptive behavior in an epidemiological system. Recognizing adaptive behavior means explicitly incorporating behavioral responses to disease risk and other incentives into epidemiological models (2, 3). The workhorse of modern epidemiology, the compartmental epidemiological model (4, 5), does not explicitly include behavioral responses to disease risk. The transmission factors in these models combine and confound human behavior and biological processes. We develop a simple compartmental model that explicitly incorporates adaptive behavior and show that this modification alters understanding of standard epidemiological metrics. For example, the basic reproductive number, R 0 , is a function of biological processes and human behavior, but R 0 lacks a behavioral interpretation in the existing literature. Biological and behavioral feedbacks muddle R 0 's biological interpretation and confound its estimation.Prior approaches that incorporate behavior into epidemiological models generally fall into three categories: specification of nonlinear contact rate functions, expanded epidemiologi...