The reemergence of tuberculosis (TB) from the 1980s to the early 1990s instigated extensive researches on the mechanisms behind the transmission dynamics of TB epidemics. This article provides a detailed review of the work on the dynamics and control of TB. The earliest mathematical models describing the TB dynamics appeared in the 1960s and focused on the prediction and control strategies using simulation approaches. Most recently developed models not only pay attention to simulations but also take care of dynamical analysis using modern knowledge of dynamical systems. Questions addressed by these models mainly concentrate on TB control strategies, optimal vaccination policies, approaches toward the elimination of TB in the U.S.A., TB co-infection with HIV/AIDS, drug-resistant TB, responses of the immune system, impacts of demography, the role of public transportation systems, and the impact of contact patterns. Model formulations involve a variety of mathematical areas, such as ODEs (Ordinary Differential Equations) (both autonomous and non-autonomous systems), PDEs (Partial Differential Equations), system of difference equations, system of integro-differential equations, Markov chain model, and simulation models.
Library of Congress Cataloging-in-Publication Data Brauer, Fred.Mathematical models in population biology and epidemiology /Fred Brauer, Carlos Castillo-Chavez.p. cm.-(Texts in applied mathematics; 40) Includes bibliographical references (p.).
Despite improved control measures, Ebola remains a serious public health risk in African regions where recurrent outbreaks have been observed since the initial epidemic in 1976. Using epidemic modeling and data from two well-documented Ebola outbreaks (Congo 1995 and Uganda 2000), we estimate the number of secondary cases generated by an index case in the absence of control interventions R0. Our estimate of R0 is 1.83 (SD 0.06) for Congo (1995) and 1.34 (SD 0.03) for Uganda (2000). We model the course of the outbreaks via an SEIR (susceptible-exposed-infectious-removed) epidemic model that includes a smooth transition in the transmission rate after control interventions are put in place. We perform an uncertainty analysis of the basic reproductive number R0 to quantify its sensitivity to other disease-related parameters. We also analyse the sensitivity of the final epidemic size to the time interventions begin and provide a distribution for the final epidemic size. The control measures implemented during these two outbreaks (including education and contact tracing followed by quarantine) reduce the final epidemic size by a factor of 2 relative the final size with a 2-week delay in their implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.