Electrohydrodynamic (EHD) jet printing is an emerging technique in the field of additive manufacturing. Due to its versatility in the inks it can print, and most importantly, the printing resolution it can achieve, it is rapidly gaining favor for application in the manufacture of electronic devices, sensors, and displays among others. Although it is an affordable and accessible manufacturing process, it does require excellent operational understanding to achieve high resolution printing of up to 50 nm as reported in literature. In this review, three main aspects are considered, namely, the ink properties, the printer system itself (including design, nozzle dimensions, applied potential, and others), and the substrate onto which printing is being carried out. Knowing how all these factors can be manipulated and brought together allows the users of EHD printing to achieve extraordinary resolution and consistent results. The review is concluded with a brief discussion on where one can see the potential for development in this field of research.