A chemical vapor deposition method is developed for thickness‐controlled (one to four layers), uniform, and continuous films of both defective gallium(II) sulfide (GaS): GaS0.87 and stoichiometric GaS. The unique degradation mechanism of GaS0.87 with X‐ray photoelectron spectroscopy and annular dark‐field scanning transmission electron microscopy is studied, and it is found that the poor stability and weak optical signal from GaS are strongly related to photo‐induced oxidation at defects. An enhanced stability of the stoichiometric GaS is demonstrated under laser and strong UV light, and by controlling defects in GaS, the photoresponse range can be changed from vis‐to‐UV to UV‐discriminating. The stoichiometric GaS is suitable for large‐scale, UV‐sensitive, high‐performance photodetector arrays for information encoding under large vis‐light noise, with short response time (<66 ms), excellent UV photoresponsivity (4.7 A W–1 for trilayer GaS), and 26‐times increase of signal‐to‐noise ratio compared with small‐bandgap 2D semiconductors. By comprehensive characterizations from atomic‐scale structures to large‐scale device performances in 2D semiconductors, the study provides insights into the role of defects, the importance of neglected material‐quality control, and how to enhance device performance, and both layer‐controlled defective GaS0.87 and stoichiometric GaS prove to be promising platforms for study of novel phenomena and new applications.
Electrohydrodynamic (EHD) jet printing is an emerging technique in the field of additive manufacturing. Due to its versatility in the inks it can print, and most importantly, the printing resolution it can achieve, it is rapidly gaining favor for application in the manufacture of electronic devices, sensors, and displays among others. Although it is an affordable and accessible manufacturing process, it does require excellent operational understanding to achieve high resolution printing of up to 50 nm as reported in literature. In this review, three main aspects are considered, namely, the ink properties, the printer system itself (including design, nozzle dimensions, applied potential, and others), and the substrate onto which printing is being carried out. Knowing how all these factors can be manipulated and brought together allows the users of EHD printing to achieve extraordinary resolution and consistent results. The review is concluded with a brief discussion on where one can see the potential for development in this field of research.
Doping of two-dimensional materials provides them tunable physical properties and widens their applications. Here, we demonstrate the postgrowth doping strategy in monolayer and bilayer tungsten disulfide (WS 2 ) crystals, which utilizes a metal exchange mechanism, whereby Sn atoms become substitutional dopants in the W sites by energetically favorable replacement. We achieve this using chemical vapor deposition techniques, where high-quality grown WS 2 single crystals are first grown and then subsequently reacted with a SnS precursor. Thermal control of the exchange doping mechanism is revealed, indicating that a sufficiently high enough temperature is required to create the S vacancies that are the initial binding sites for the SnS precursor and metal exchange occurrence. This results in a better control of dopant distribution compared to the tradition all-in-one approach, where dopants are added during the growth phase. The Sn dopants exhibit an n-type doping behavior in the WS 2 layers based on the decreased threshold voltage obtained from transistor device measurements. Annular dark-field scanning transmission electron microscopy shows that in bilayer WS 2 the Sn doping occurs only in the top layer, creating vertical heterostructures with atomic layer doping precision. This postgrowth modification opens up ways to selectively dope one layer at a time and construct mixed stoichiometry vertical heterojunctions in bilayer crystals.
We report original, selective, and efficient approaches to novel nonlinear optical (NLO) materials, namely homoleptic double- and triple-decker europium(III) complexes 2 and 3 with the A B-type phthalocyanine ligand (2,3-bis[2'-(2''-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-n-butoxyphthalocyanine 1) bearing two anchoring diethyleneglycol chains terminated with OH groups. Their covalently linked nanoconjugates with mercaptosuccinic acid-capped ternary CdSeTe/CdTeS/ZnSeS quantum dots are prepared in the presence of an ethyl(dimethylaminopropyl)carbodiimide activating agent. Optical limiting (OL) properties of the obtained low-symmetry complexes and their conjugates with quantum dots (QDs) are measured for the first time by the open-aperture Z-scan technique (532 nm laser and pulse rate of 10 ns). For comparison, symmetrical double- and triple-decker Eu octa-n-butoxyphthalocyaninates 5 and 6 and their mixtures with trioctylphosphine oxide-capped QDs are also synthesized and studied. It is revealed that both lowering of molecular symmetry and expansion of the π-electron system upon moving from double- to triple-decker complexes significantly improves the OL characteristics, making the low-symmetry triple-decker complex 3 the most efficient optical limiter in the studied family of sandwich complexes, affording 50 % lowering of light transmittance below 0.5 J cm input fluence. Conjugation (both covalent and noncovalent) with QDs affords further enhancement of the OL properties of both double- and triple-decker complexes. Altogether, the obtained results contribute to the development of novel nonlinear optical materials for future nanoelectronic and optical device applications.
Electrohydrodynamic Jet Printing (EHD) enables the printing of sub-micron structures using a wide variety of materials and substrates, and thus comparing favorably to many current additive manufacturing techniques. By using...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.