2019
DOI: 10.31521/modecon.v15(2019)-03
|View full text |Cite
|
Sign up to set email alerts
|

Control and Methods of Minimizing Credit Risk of the Bank

Abstract: Іваненко Г. Ю., здoбувaч вищoї oсвiти обліково-фінансового факультету, Миколаївський національний агарний університет, м. Миколаїв, Україна Тарасенко В. П., здoбувaч вищoї oсвiти обліково-фінансового факультету, Миколаївський національний агарний університет, м. Миколаїв, Україна Управління та засоби мінімізації кредитного ризику банку Анотація. Ринок праці змінюється під впливом глобалізаційних процесів та активного проникнення цифрових Анотація. Охарактеризовано поняття управління кредитним ризиком, а саме-у… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…Domestic academic circles use a variety of evaluation methods such as multivariate discrimination method and NN model to study the CR evaluation of commercial bank (CB), in order to combine the actual situation of my country's basic national conditions to build a CB CR model [7][8]. For example, experts such as Okafor A used the Lambda test to evaluate the quality of the model, and used the receiver operating characteristic curve (ROC) to build the model, the model classification accuracy was 83.7%, and the proposed classification model had predictive ability [9].…”
Section: Introductionmentioning
confidence: 99%
“…Domestic academic circles use a variety of evaluation methods such as multivariate discrimination method and NN model to study the CR evaluation of commercial bank (CB), in order to combine the actual situation of my country's basic national conditions to build a CB CR model [7][8]. For example, experts such as Okafor A used the Lambda test to evaluate the quality of the model, and used the receiver operating characteristic curve (ROC) to build the model, the model classification accuracy was 83.7%, and the proposed classification model had predictive ability [9].…”
Section: Introductionmentioning
confidence: 99%