This paper studies the continuous-time distributed optimization of a sum of convex functions over directed graphs. Contrary to what is known in the consensus literature, where the same dynamics works for both undirected and directed scenarios, we show that the consensus-based dynamics that solves the continuous-time distributed optimization problem for undirected graphs fails to converge when transcribed to the directed setting. This study sets the basis for the design of an alternative distributed dynamics which we show is guaranteed to converge, on any strongly connected weightbalanced digraph, to the set of minimizers of a sum of convex differentiable functions with globally Lipschitz gradients. Our technical approach combines notions of invariance and cocoercivity with the positive definiteness properties of graph matrices to establish the results.