In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.