Summary
Despite the availability of vaccines, equine influenza virus (EIV) continues to pose a threat to the racing industry. The virus spreads rapidly in unprotected populations and large scale outbreaks, such as those in South Africa in 2003 and Australia in 2007, can cost billions of pounds. Like other influenza viruses, EIV undergoes antigenic variation, enabling it to evade antibodies generated against previous infection or vaccination. The UK has an active surveillance programme to monitor antigenic drift and participates in an international collaboration with other countries in Europe, Japan and the USA to select suitable vaccine strains. Selection is primarily based upon characterisation of the viral haemagglutinin (HA), the surface protein that induces a protective antibody response; this protein is an important component of commercial vaccines. In recent years vaccine technology has improved and diagnostic methods have become increasingly sensitive, both play a crucial part in facilitating the international movement of horses. Mathematical modelling techniques have been applied to study the risk factors involved in outbreaks and provide valuable information about the impact of vaccination. Other factors, such as pathogenicity, are poorly understood for EIV yet may play an important role in the spread of a particular virus. They may also affect the ability of the virus to cross the species barrier, as seen with the transfer to dogs in the USA. Severity of infection is likely to be influenced by more than one gene, but differences in the NS1 protein are believed to influence the cytokine response in the horse and have been manipulated to produce potential vaccine strains.