2019
DOI: 10.1016/j.ces.2019.02.026
|View full text |Cite
|
Sign up to set email alerts
|

Control of ice crystal growth and its effect on porous structure of chitosan cryogels

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
33
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 61 publications
(35 citation statements)
references
References 58 publications
0
33
0
2
Order By: Relevance
“…As biopolymeric materials from natural sources demonstrate great potential in biomedical, pharmaceutical, and environmental applications due to their biocompatible, biodegradable and non‐toxic structures. To the best of our knowledge, the synthesis of cryogel from natural polymers in the literature is very new and there only are few studies on cryogels from natural polymers 17,21,24,26 . To the best of our knowledge this is the first report for the synthesis and characterization of Inulin cryogels in the literature.…”
Section: Resultsmentioning
confidence: 97%
See 1 more Smart Citation
“…As biopolymeric materials from natural sources demonstrate great potential in biomedical, pharmaceutical, and environmental applications due to their biocompatible, biodegradable and non‐toxic structures. To the best of our knowledge, the synthesis of cryogel from natural polymers in the literature is very new and there only are few studies on cryogels from natural polymers 17,21,24,26 . To the best of our knowledge this is the first report for the synthesis and characterization of Inulin cryogels in the literature.…”
Section: Resultsmentioning
confidence: 97%
“…Cryogels are distinctive types of hydrogels with faster response time to external stimuli due to their highly macro porous interconnected matrices that can be obtained by crosslinking monomeric or polymeric precursors in the partially frozen phase under cryogenic conditions 15,16 . The size and the extent of pores in cryogels can be controlled by various parameters, for example, the amount of water, cooling rate, the reaction temperature, monomer/polymer concentration, the amount of crosslinker, the amount of catalyst, etc 17‐21 . Ascryogels exhibit faster response time and mechanical strength compared to normal hydrogels, they offer many advantages in common applications including environmentally related, that is, separation, actuation, and sensors, tissue engineering and as cell carrier in biotechnology due to their super‐porous structures 22‐27 .…”
Section: Introductionmentioning
confidence: 99%
“…The difference in color can be attributed to the fact that nano-Cu 2 O changed the optical properties of the material itself, which was dependent on the structure, size, and dispersion of the particles [13]. The freeze-drying condensed the moisture in the material into ice, and the “ice matrix” left after the sublimation of the ice was the essence of its macroscopic appearance as a porous structure [37,38].…”
Section: Resultsmentioning
confidence: 99%
“…Formaldehyd führt zum einfachsten Amin -NH = CH 2 ,das mit einer weiteren NH 2 -Gruppe eine vernetzende Methylenbrücke -NH-CH 2 -NH-bildet. [28][29][30][31][32][33][34][35][36][37][38][39] Dialdehyde wie Glutaraldehyd, [29,[40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55] Glyoxal [29,56,57] und 2,6-Pyridindicarbaldehyd [58] sind ebenfalls gebräuchliche Vernetzer.G lutaraldehyd ist zudem als Fixierungsmittel fürb iologische Gewebe bekannt und wird nicht nur als Gelierungsmittel fürChitosan, sondern auch als Vernetzer nach der Gelierung zur Verbesserung der mechanischen Stabilitäte ingesetzt. [59][60][61][62][63][64] Oxidierte Polysaccharide wie Dextran [52] und Cellulose [65] weisen ebenfalls mehrere Aldehydfunktionen pro Polymerkette auf,s odass eine Schiff-Basen-Vernetzung von Chitosan mçglich ist.…”
Section: Chemische Vernetzungunclassified