This article presents a composite adaptive control method to improve the position-tracking performance of an electro-hydraulic system driven by dual constant displacement pump and dual servo motor named as a novel electro-hydraulic system with unknown disturbance. A composite adaptive controller based on backstepping method is designed to estimate the uncertainties of electro-hydraulic control system, including the damping coefficient and elastic modulus. In order to release the persistent excitation condition of conventional adaptive control, which is often infeasible in practice, a prediction error based on the online historical data is used to update the estimated parameters. Furthermore, a disturbance observer is used to estimate the disturbance including the unmeasurable load force, friction and other unmodeled disturbance. The experiment results are provided and compared with other methods to verify the effectiveness of the proposed method, and the results have indicated that the proposed method has a better position-tracking performance with the convergent estimated parameters.