With the emerging trend of big data and internet-of-things, sensors with compact size, low cost and robust performance are highly desirable. Spectral imaging and spectral LIDAR systems enable measurement of spectral and 3D information of the ambient environment. These systems have been widely applied in different areas including environmental monitoring, autonomous driving, biomedical imaging, biometric identification, archaeology and art conservation. In this review, modern applications of state-of-the-art spectral imaging and spectral LIDAR systems in the past decade have been summarized and presented. Furthermore, the progress in the development of compact spectral imaging and LIDAR sensing systems has also been reviewed. These systems are based on the nanophotonics technology. The most updated research works on subwavelength scale nanostructure-based functional devices for spectral imaging and optical frequency comb-based LIDAR sensing works have been reviewed. These compact systems will drive the translation of spectral imaging and LIDAR sensing from table-top toward portable solutions for consumer electronics applications. In addition, the future perspectives on nanophotonics-based spectral imaging and LIDAR sensing are also presented.