An array of paired elliptic nanoparticles designed to enhance local fields around the particle pair is fabricated with gold embedded in quartz. Light excites a coupled plasmon resonance in the particle pair and the system acts like a plasmonic nanoantenna providing an enhanced electromagnetic field. Near-field scanning optical microscopy and finite element modeling are used to study the local field effects of the nanoantenna system. Local illumination shows similar resonant properties as plane wave illumination: a strong, localized optical resonance for light polarized parallel to the main, center-to-center axis.
The improvement of light-emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. While emission rate enhancement is certainly one of the targets, in this regard, for LED integration to complex photonic devices, one would require to have, additionally, precise control of the wavefront of the emitted light. Metasurfaces are spatial arrangements of engineered scatters that may enable this light manipulation capability with unprecedented resolution. Most of these devices, however, are only able to function properly under irradiation of light with a large spatial coherence, typically normally incident lasers. LEDs, on the other hand, have angularly broad, Lambertian-like emission patterns characterized by a low spatial coherence, which makes the integration of metasurface devices on LED architectures extremely challenging. A novel concept for metasurface integration on LED is proposed, using a cavity to increase the LED spatial coherence through an angular collimation. Due to the resonant character of the cavity, extending the spatial coherence of the emitted light does not come at the price of any reduction in the total emitted power. The experimental demonstration of the proposed concept is implemented on a GaP LED architecture including a hybrid metallic-Bragg cavity. By integrating a silicon metasurface on top we demonstrate two different functionalities of these compact devices: directional LED emission at a desired angle and LED emission of a vortex beam with an orbital angular momentum. The presented concept is general, being applicable to other incoherent light sources and enabling metasurfaces designed for plane waves to work with incoherent light emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.