Ultra-thin Hf1-xZrxO2 films have attracted tremendous interest owing to their Sicompatible ferroelectricity arising from polar polymorphs. While these phases have been grown on Si as polycrystalline films, epitaxial growth was only achieved on non-Si substrates. Here we report direct epitaxy of polar phases on Si using pulsed laser deposition enabled via in situ scavenging of the native a-SiOx under ballistic conditions. On Si (111), polar rhombohedral (r)-phase and bulk monoclinic (m-) phase coexist, with the volume of the former increasing with increasing Zr concentration. R-phase is stabilized in the regions with a direct connection between the substrate and the film through the compressive strain provided by an interfacial crystalline c-SiO2 layer., The film relaxes to a bulk m-phase in regions where a-SiOx regrows.On Si (100), we observe polar orthorhombic o-phase coexisting with m-phase, stabilized by inhomogeneous strains at the intersection of monoclinic domains. This work provides fundamental insight into the conditions that lead to the preferential stabilization of r-, o-and mphases.
Introduction:Ferroelectric hafnia-based thin-films 1 have by now been established as the most promising materials to realize the potential of ferroelectric phenomena in real devices 2,3 . Their Si compatibility, simple chemistry and unique ferroelectricity, that becomes more robust with miniaturization, is tailor-made for microelectronics, offering ready-made alternatives to conventional ferroelectrics that lack all these attributes 4-12 . Such distinguishing characteristics 2 lead to an upsurge in application-oriented research as well as in curiosity-driven fundamental research to solve questions such as why these materials are capable of sustaining the unconventional ferroelectricity 13-32 , how these materials negate the effects of depolarization fields 33,34 , and whether such a new type of ferroelectricity can be replicated in other simple oxide systems.A prominent feature of hafnia-based materials is polymorphism 35 . While the ground state in the bulk HfO2 is a non-polar monoclinic (m-, P21/c) phase, a plethora of low-volume both polar and non-polar metastable states can be stabilized at ambient conditions via a combination of strategies such as cationic and anionic doping 1,[25][26][27]29,32 , thermal and inhomogeneous stresses 36,37 , nanostructuring 38 , epitaxial strain 16,20,22,23,26,29,[39][40][41][42] , and oxygen vacancy engineering 43,44 , all of which can be suitably engineered into thin-film geometries.Based on first-principles calculations 15,39,[45][46][47] at least five polar polymorphs (with space groups Pca21, Cc, Pmn21, R3 and R3m) can be identified as those that can be experimentally obtained.Owing to its relatively low energy, the orthorhombic (o-) Pca21 phase is widely observed in hafnia-based films grown via atomic layer deposition (ALD) 1,17,24,25 , chemical solution deposition (CSD) 28 , RF sputtering on Si 18,21 and pulsed-laser deposition (PLD) on selected substrates 19,23,26,31,[40][41][42...