The use of laccases applied in bioremediation processes has been increasingly studied, given the urgent need to overcome the environmental problems caused by emerging contaminants. It is known that immobilized enzymes have better operational stability under reaction conditions, allowing for greater applicability. However, given the lack of commercially available immobilized laccases, the search for immobilization materials and methods continues to gain effort. The use of polyacrylonitrile (PAN) to immobilize enzymes has been investigated since it is a low-cost material and can be modified and functionalized to well interact with the enzyme. This polymer can be used with different morphologies such as fibers, beads, and coreshell, presenting as an easily applicable alternative. This review presents the missing link between polymer and enzyme through an overview of PAN's current use as support for laccase immobilization and polymer functionalization methods, considering the importance of immobilized laccases in several industrial sectors.