Due to the unavoidable interaction between the quantum channel and its ambient environment, it is difficult to generate and maintain the maximally entanglement. Thus, the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application. Here, we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously. The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability. In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels, we put forward the second scheme, which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers. In particular, its success probability can reach 100% in principle, and independent of the entanglement degree of the shared non-maximally entangled channel. Notably, in the second scheme, the auxiliary particle is not required.