“…Owing to the distinctive physicochemical properties of ILs (wide liquidus range, high redox and thermal stability, negligible vapor pressure, and tunable polarity) and their advantages over organic solvents, classic melts, or solid state reactions, their applications include separation techniques [7,8,9], lubrication [10], electrodeposition [11], acting as electrolytes in photovoltaic devices (e.g., solar cells) [12,13,14], catalysis for clean technology [15,16,17,18], polymerization processes [19], crystal engineering of a wide range of inorganic substances [20,21,22,23,24,25], and syntheses of new inorganic materials in general [23,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51]. Recently, several comprehensive reviews on syntheses of inorganic compounds in ILs have been published by Taubert [52], Feldmann [28], Dehnen [51], Janiak [42,53], Scrosati and Passerini [48], Morris [54], Mudring [55], Prechtl [56], Zhu [57], Dai [58], and Ruck [23,27,59] among others.…”