Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Spherical Tokamak for Energy Production (STEP) prototype powerplant (SPP) will be a first-of-a-kind powerplant—its prime objective is to export electrical power, to the national power transmission system (‘grid’), above 100 MWe. As part of a wider issue, addressing the STEP concept design, this article seeks to explore how electrical power will be generated from a spherical tokamak heat source. Accordingly, the following key functions of the SPP power infrastructure are reviewed. Cooling the tokamak : cooling the tokamak while extracting useful thermal energy. Generating power : conversion of thermal energy to electrical energy (power generation). Managing energy : management of the site-wide distribution, storage and energy export. In each of these areas, the design scope, challenges and solution spaces have been discussed. This has shaped the design of the SPP power infrastructure, which in turn has ensured a powerplant design focused on operability and performance. Furthermore, it has been demonstrated that the SPP will achieve its prime objective in generating net power, which is enabled by a unique power infrastructure. Confidence in the ability to generate net power will be refined as the design matures. Finally, this article recommends key opportunities that STEP could use to improve power generation and reduce the parasitic load of the SPP. This article is part of the theme issue ‘Delivering Fusion Energy – The Spherical Tokamak for Energy Production (STEP)’.
The Spherical Tokamak for Energy Production (STEP) prototype powerplant (SPP) will be a first-of-a-kind powerplant—its prime objective is to export electrical power, to the national power transmission system (‘grid’), above 100 MWe. As part of a wider issue, addressing the STEP concept design, this article seeks to explore how electrical power will be generated from a spherical tokamak heat source. Accordingly, the following key functions of the SPP power infrastructure are reviewed. Cooling the tokamak : cooling the tokamak while extracting useful thermal energy. Generating power : conversion of thermal energy to electrical energy (power generation). Managing energy : management of the site-wide distribution, storage and energy export. In each of these areas, the design scope, challenges and solution spaces have been discussed. This has shaped the design of the SPP power infrastructure, which in turn has ensured a powerplant design focused on operability and performance. Furthermore, it has been demonstrated that the SPP will achieve its prime objective in generating net power, which is enabled by a unique power infrastructure. Confidence in the ability to generate net power will be refined as the design matures. Finally, this article recommends key opportunities that STEP could use to improve power generation and reduce the parasitic load of the SPP. This article is part of the theme issue ‘Delivering Fusion Energy – The Spherical Tokamak for Energy Production (STEP)’.
The programme to design plasma scenarios for the Spherical Tokamak for Energy Production (STEP), a reactor concept aiming at net electricity production, seeks to exploit the inherent advantages of the spherical tokamak (ST) while making conservative assumptions about plasma performance. This approach is motivated by the large gap between present-day STs and future burning plasmas based on this concept. It is concluded that plasma exhaust in such a device is most likely to be manageable in a double null (DN) configuration, and that high core performance is favoured by positive triangularity (PT) plasmas with an elevated central safety factor. Based on a full technical and physics assessment of external heating and current drive (CD) systems, it was decided that the external CD is provided most effectively by microwaves. Operation with active resistive wall mode (RWM) stabilization as well as high elongation is needed for the most compact solution. The gap between existing devices and STEP is most pronounced in the area of core transport, owing to high normalized plasma pressure in the latter which changes qualitatively the nature of the turbulence controlling transport. Plugging this gap will require dedicated experiments, particularly on high-performance STs, and the development of reduced models that faithfully represent turbulent transport at high normalized pressure. Plasma scenarios in STEP will also need to be such that edge localized modes (ELMs) either do not occur or are small enough to be compatible with material lifetime limits. The high current needed for a power plant-relevant plasma leads to the unavoidable generation of high runaway electron beam current during a disruption, where novel mitigation techniques may be needed. This article is part of the theme issue ‘Delivering Fusion Energy – The Spherical Tokamak for Energy Production (STEP)’.
The Spherical Tokamak for Energy Production (STEP) programme aims to deliver a first-of-a-kind fusion prototype powerplant (SPP). The SPP plasma places extreme heat, particle and structural loads onto the plasma-facing components (PFCs) of the divertor, limiters and inboard and outboard sections of the first wall. The PFCs must manage the heat and particle loads and wider powerplant requirements relating to safety, net power generation, tritium breeding and plant availability. To enable STEP PFC concepts to be identified that satisfy these wide-ranging requirements, an iterative design (‘Decide & Iterate’) methodology has been used to synchronize a prioritized set of decisions, within the fast-paced, iterative, whole plant concept design schedule. This paper details the ‘Decide and Iterate’ methodology and explains how it has enabled the identification of the SPP PFC concepts. These include innovative PFC solutions such as a helium-cooled discrete and panel limiter design to increase tritium breeding while providing sufficient coverage and enabling individual limiter replacement; the integration of the outboard first wall with the breeding zone to enhance fuel self-sufficiency and power generation; and the use of heavy water (D 2 O) within the inboard first wall and divertor PFCs to increase tritium breeding within the outboard breeding zone. This article is part of the theme issue ‘Delivering Fusion Energy – The Spherical Tokamak for Energy Production (STEP)’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.