We perform a detailed analysis of the recollision-excitation-tunneling (RESI) mechanism in laserinduced nonsequential double ionization (NSDI), in which the first electron, upon return, promotes a second electron to an excited state, from which it subsequently tunnels, based on the strong-field approximation. We show that the shapes of the electron momentum distributions carry information about the bound-state with which the first electron collides, the bound state to which the second electron is excited, and the type of electron-electron interaction. Furthermore, one may define a driving-field intensity threshold for the RESI physical mechanism. At the threshold, the kinetic energy of the first electron, upon return, is just sufficient to excite the second electron. We compute the distributions for helium and argon in the threshold and above-threshold intensity regime. In the latter case, we relate our findings to existing experiments. The electron-momentum distributions encountered are symmetric with respect to all quadrants of the plane spanned by the momentum components parallel to the laser-field polarization, instead of concentrating on only the second and fourth quadrants.