“…Current NMR and X-ray techniques allow defining the molecular structures of disulfide-rich biomolecules in high resolution. As disulfide bridges constitute the only natural covalent link between polypeptides strands, the acquired knowledge on their contribution to molecular scaffolding supports engineering of new cystine-based compounds with new functional (Nagarajan et al, 2018) or dynamical features (Gutmans et al, 2019), enhanced stability (Dombkowski et al, 2014), ultimately, aiming at improved pharmaco-kinetic and -dynamic properties for new therapies and treatment approaches. However, disulfide bonds tend to be unstable under reducing conditions, i.e., in many physiological situations, which triggered search for therapeutic compounds to make use of chemical modifications to stably replace these bonds.…”