Low‐cost, non‐toxic, and abundant red phosphorus (RP) with high gravimetric discharge/charge capacity has been recognized as a promising anode candidate for potassium‐ion batteries (KIBs). However, the large volumetric change, severe agglomeration, and rapid capacity attenuation during discharge/charge cycles are major obstacles for practical applications in potassium‐ion storage. In order to eliminate such intrinsic deficiencies, a mosaic RP/MoS2 hybrid is designed and prepared by using a simple ball‐milling method and subsequently used as an anode for KIBs. The hybrid with a certain ratio of 2 : 1 can achieve a sustainable K+ storage capability (246.6/239.6 mAh g−1 for 100 cycles at 50 mA g−1), considerable long‐cycle performance (120.5/118.0 mAh g−1 at 1000 mA g−1 after 500 cycles), and good rate capability. The cycling performance is attributed to a pseudocapacitive effect, controllable interlayer spacing of MoS2, and enhanced conductivity. In view of the scalable synthesis process and considerable cycling durability, the RP/MoS2 hybrid may shed light on the rational design of novel anode alternatives for KIBs.