Calculation models for the selection of cable lines used for expansion and modernization in the energy system and energy transmission planning are recognized tools supporting decision-making in both the energy sector and energy policy. At the same time, the above calculation models contain a large number of correction factors taking into account the temperature of the external environment at various points, the mutual influence of which is not taken into account. This means limitations to today’s common approaches to solutions, especially with regard to the required safety buffer for cable line selection. To meet this challenge, this article presents a parameter that takes into account the change and difference in temperature at various points in the external environment in the analyzed cable line systems. The purpose of this paper was to develop a new approach to the selection of a cable line in order to minimize failure during operation. For this purpose, possible temperature cases that may occur during line operation in different countries and at different rated voltages have been identified. Simulation models for individual cable line layouts were developed and the extreme temperature cases of the line operation for the maximum negative and positive temperature difference between the cable core and the external environment were considered in detail. The development of the curve of the change of the correction factor for the difference in the operating temperature of the cable line will allow for a more precise selection of the cable line parameters and the shortening of the current calculation model in terms of cable selection. In addition, this article presents a comparison of the change in the value of the correction factor from the change in temperature of a selected phase of a cable line system.