DFT studies with the B3LYP functional have been carried out on the Suzuki-Miyaura cross-coupling reactions of phenyl chloride and phenylboronic acid catalyzed by palladium complexes with N- or P-chelating ligands. The full catalytic cycle, from the addition of reactants to the catalyst to the release of the cross-coupled product from the complexed intermediate, has been examined. The stages within the cycle, such as oxidative addition, transmetalation, and reductive elimination, were validated by linking the mechanistically relevant intermediates and transition states. Various derivatives of diimine, diphosphine, and diamine were considered as potential model ligands. The catalytic reaction employing diimine as the chelating ligand has been verified as the one with the most energetically feasible route.