2021
DOI: 10.1016/j.matcom.2021.06.007
|View full text |Cite
|
Sign up to set email alerts
|

Convergence analysis of a symmetric exponential integrator Fourier pseudo-spectral scheme for the Klein–Gordon–Dirac equation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
5
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 42 publications
0
5
0
Order By: Relevance
“…Lemma [38] For v>1false/2$$ v>1/2 $$, uHvfalse(normalΩfalse)$$ u\in {H}^v\left(\Omega \right) $$ and U,Wfalse[Hvfalse(normalΩfalse)false]2$$ U,W\in {\left[{H}^v\left(\Omega \right)\right]}^2 $$ , we have alignleftalign-1uσ3WvCvuvWv,Uσ3WvCvUvWv.$$ {\left\Vert u{\sigma}_3W\right\Vert}_v\le {C}_v{\left\Vert u\right\Vert}_v{\left\Vert W\right\Vert}_v,\kern1em {\left\Vert {U}^{\ast }{\sigma}_3W\right\Vert}_v\le {C}_v{\left\Vert U\right\Vert}_v{\left\Vert W\right\Vert}_v.\kern0.5em $$ Here Cv>0$$ {C}_v>0 $$ is independent of u$$ u $$, U$$ U $$ and W$$ W $$.…”
Section: Exponential Wave Integrator Fourier Pseudo‐spectral Methodsmentioning
confidence: 99%
See 3 more Smart Citations
“…Lemma [38] For v>1false/2$$ v>1/2 $$, uHvfalse(normalΩfalse)$$ u\in {H}^v\left(\Omega \right) $$ and U,Wfalse[Hvfalse(normalΩfalse)false]2$$ U,W\in {\left[{H}^v\left(\Omega \right)\right]}^2 $$ , we have alignleftalign-1uσ3WvCvuvWv,Uσ3WvCvUvWv.$$ {\left\Vert u{\sigma}_3W\right\Vert}_v\le {C}_v{\left\Vert u\right\Vert}_v{\left\Vert W\right\Vert}_v,\kern1em {\left\Vert {U}^{\ast }{\sigma}_3W\right\Vert}_v\le {C}_v{\left\Vert U\right\Vert}_v{\left\Vert W\right\Vert}_v.\kern0.5em $$ Here Cv>0$$ {C}_v>0 $$ is independent of u$$ u $$, U$$ U $$ and W$$ W $$.…”
Section: Exponential Wave Integrator Fourier Pseudo‐spectral Methodsmentioning
confidence: 99%
“…Lemma [38] For v>1false/2$$ v>1/2 $$, u1,u2Hvfalse(normalΩfalse)$$ {u}_1,{u}_2\in {H}^v\left(\Omega \right) $$, normalΨ1,normalΨ2false[Hvfalse(normalΩfalse)false]2$$ {\Psi}_1,{\Psi}_2\in {\left[{H}^v\left(\Omega \right)\right]}^2 $$ and Ffalse(normalΨfalse)$$ F\left(\Psi \right) $$, Gfalse(u,normalΨfalse)$$ G\left(u,\Psi \right) $$ of ( 8 ), we have alignleftalign-1align-2F(Ψ1)F(Ψ2)v(Ψ1v+Ψ2v)Ψ1Ψ2v,align-1align-2G(u1,Ψ1)G(u2,Ψ2)v<...…”
Section: Exponential Wave Integrator Fourier Pseudo‐spectral Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…In practical application, efficient numerical methods are very necessary. Existing numerical methods include finite difference (FD) and compact FD (CFD) methods [8,12,31,41,44], exponential wave integrator (EWI) methods [27,44], time-splitting (TS) methods [42,45]. Generally speaking, compared with the FD and CFD methods, these EWI methods and TS methods perform better in numerical accuracy and regularity requirement.…”
Section: Introductionmentioning
confidence: 99%