2006
DOI: 10.1016/j.cam.2005.09.017
|View full text |Cite
|
Sign up to set email alerts
|

Convergence properties of some block Krylov subspace methods for multiple linear systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
27
0
1

Year Published

2008
2008
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 54 publications
(28 citation statements)
references
References 19 publications
0
27
0
1
Order By: Relevance
“…. , s, at the same time and this leads to the block GMRES [18]; see also [4,7,14] and the global GMRES [9] methods. For the block GMRES method, we consider the block Krylov subspace defined by…”
Section: Gmres-type Methods For Multiple Linear Systemsmentioning
confidence: 99%
See 1 more Smart Citation
“…. , s, at the same time and this leads to the block GMRES [18]; see also [4,7,14] and the global GMRES [9] methods. For the block GMRES method, we consider the block Krylov subspace defined by…”
Section: Gmres-type Methods For Multiple Linear Systemsmentioning
confidence: 99%
“…In Section 2, we recall some properties of the matrix product introduced in [4]. In Section 3, we review the global GMRES method for multiple linear systems.…”
Section: Introductionmentioning
confidence: 99%
“…We review, in Section 2, some properties of the ⊗-product and the -product introduced in [3]. In Section 3, we show how to apply the global Arnoldi process for solving the multioutput Sylvester-Observer equation.…”
Section: Converges To Zero As T Increases Where X(t) Is the Solutionmentioning
confidence: 99%
“…In the following, we recall the -product defined in [3] and list some properties that will be useful later. We notice that…”
Section: Background and Notationsmentioning
confidence: 99%
“…Um avanço mais recente que será apresentado na seção 5.4, está relacionado a se permitir que o produto matriz-vetor seja calculado de forma inexata, necessidade sentida em áreas aonde a matriz não é disponível ou é muito cara para ser calculada exatamente ( [19], [20], [52], [112], [114], [129]). Apresentamos, a seguir, uma bibliografia onde as várias propostas aqui discutidas, e outras que não trataremos, podem ser estudadas: [9], [22], [25], [26], [34], [37], [49], [62], [63], [77], [89], [95], [100], [109] e [140]. [86]), em um grande número de problemas importantes, a convergên-cia dos MPSK depende em larga escala da distribuição dos autovalores.…”
Section: Novos Desenvolvimentos Dos Métodos De Krylovunclassified