The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrate how tensor-based global approaches can be exploited to solve ill-posed problems arising from recovering blurry multichannel (color) images and videos, using the so-called Tikhonov regularization technique, to provide computable approximate regularized solutions. We also review a generalized cross-validation and discrepancy principle type of criterion for the selection of the regularization parameter in the Tikhonov regularization. Applications to image sequence processing are given to demonstrate the efficiency of the algorithms.
In this paper, we present new Tensor extrapolation methods as generalizations of well known vector, matrix and block extrapolation methods such as polynomial extrapolation methods or ϵ-type algorithms. We will define new tensor products that will be used to introduce global tensor extrapolation methods. We discuss the application of these methods to the solution of linear and non linear tensor systems of equations and propose an efficient implementation of these methods via the global-QR decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.