Abstract:This article deduces geometric convergence rates for approximating matrix functions via inversefree rational Krylov methods. In applications one frequently encounters matrix functions such as the matrix exponential or matrix logarithm; often the matrix under consideration is too large to compute the matrix function directly, and Krylov subspace methods are used to determine a reduced problem. If many evaluations of a matrix function of the form f(A)v with a large matrix A are required, then it may be advantage… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.