Lukács and András posed the problem of showing the existence of a set of n − 2 points in the interior of a convex n-gon so that the interior of every triangle determined by three vertices of the polygon contains a unique point of S. Such sets have been called pebble sets by De Loera, Peterson, and Su. We seek to characterize all such sets for any given convex polygon in the plane.We first consider a certain class of pebble sets, called peripheral because they consist of points that lie close to the boundary of the polygon. We characterize all peripheral pebble sets, and show that for regular polygons, these are the only ones. Though we demonstrate examples of polygons where there are other pebble sets, we nevertheless provide a characterization of the kinds of points that can be involved in non-peripheral pebble sets. We furthermore describe algorithms to find such points.