We give upper and lower bounds on the maximum and minimum number of geometric
configurations of various kinds present (as subgraphs) in a triangulation of
$n$ points in the plane. Configurations of interest include \emph{convex
polygons}, \emph{star-shaped polygons} and \emph{monotone paths}. We also
consider related problems for \emph{directed} planar straight-line graphs.Comment: update reflects journal version, to appear in Graphs and
Combinatorics; 18 pages, 13 figure