We present an experimental realization of a Coulomb blockade refrigerator (CBR) based on a single-electron transistor (SET). In the present structure, the SET island is interrupted by a superconducting inclusion to permit charge transport while preventing heat flow. At certain values of the bias and gate voltages, the current through the SET cools one of the junctions. The measurements follow the theoretical model down to ∼80 mK, which was the base temperature of the current measurements. The observed cooling increases rapidly with decreasing temperature, in agreement with the theory, reaching about a 15 mK drop at the base temperature. The CBR appears as a promising electronic cooler at temperatures well below 100 mK.