In this paper, a linearized discrete charge balance (LDCB) control strategy is proposed for buck converter operating in discontinuous conduction mode (DCM). For DC-DC power converters, discrete charge balance (DCB) control is an attractive approach to improve the output voltage transient response. However, as a non-linear control strategy, the algorithm is complex, which is difficult for implementation. To reduce the complexity, this paper proposes the LDCB control strategy that is derived through linearizing conventional DCB controller. By deriving the differential functions of the DCB control algorithm, the small signal relationship between the input and output of DCB controller is explored. Furthermore, based on the relationship, the LDCB controller is formed through three parallel feed loops to the duty ratio. As a linear control approach, the achieved LDCB controller is greatly simplified for implementation. This not only saves the hardware cost, but also reduces the calculation lag, which provides potential to improve the switching frequency. Besides, since the LDCB controller shares the same small signal model as that of DCB controller, it achieves similar control loop bandwidth and transient performance. Effectiveness of the proposed LDCB control is verified by zero/pole plots, transient analyses and experimental results.