The purpose of this study was to investigate the combined effects of aflatoxin B1 and ochratoxin A on protein expression and catalytic activities of CYP1A2, CYP2E1, CYP3A29 and GSTA1 and the preventive effect of dietary byproduct antioxidants administration against these mycotoxin damage. Three experimental groups (E1, E2, E3) and one control group (C) of piglets after weaning (TOPIGS-40 hybrid) were fed with experimental diets for 30 days. A basal diet containing normal compound feed for starter piglets was used as a control treatment and free of mycotoxin. The experimental groups were fed as follows: E1—basal diet plus a mixture (1:1) of two byproducts (grapeseed and sea buckthorn meal), E2—the basal diet experimentally contaminated with mycotoxins (479 ppb OTA and 62ppb AFB1) and E3—basal diet containing 5% of the mixture (1:1) of grapeseed and sea buckthorn meal and contaminated with the mix of OTA and AFB1. After 4 weeks, the animals were slaughtered, and tissue samples were taken from liver and kidney in order to perform microsomal fraction isolation, followed by protein expression and enzymatic analyses. The protein expressions of CYP2E1 and CYP3A29 were up-regulated in an insignificant manner in liver, whereas in kidney, those of CYP1A2, CYP2E1 and CYP3A29 were down-regulated. The enzymatic activities of CYP1A2, CYP2E1 and CYP3A29 decreased in liver, in a significant manner, whereas in kidney, these increased significantly. The co-presence of the two mycotoxins and the mixture of grape seed and sea buckthorn meal generated a tendency to return to the control values, which suggest that grapeseed and sea buckthorn meal waste represent a promising source in counteracting the harmful effect of ochratoxin A and aflatoxin B.