This paper deals with the design and fabrication of durable radio frequency identification (RFID) passive tag with inductive coupling, operating at ultra-high frequencies, dedicated to the identification and monitoring of professional textile products. A reliable architecture for the tag transponder is proposed, featuring a minimal number of galvanic contacts: The two pins of the integrated circuit are connected to the terminals of the inductive coupling loop by using surface mount technology welding. The transponder is encapsulated with an electrically insulating material which is waterproof and resistant to mechanical, thermal, and chemical stress. The antenna is inductively coupled to the transponder through a double loop which substantially reduces the length of the tag and significantly improves the coupling factor, enabling the tag to operate at a low power level. The reliability and flexibility of the tag is obtained by using appropriate materials and manufacturing methods for the ultra-high frequency (UHF) antenna by embroidering a multifilament stainless steel wire on textile support. The washing cycle tests have validated the applicability of this flexible and washable RFID tag, and its electromagnetic performance was experimentally assessed in an independent laboratory.