This account aims to describe our recent efforts on the synthesis and utilization of N-containing heterocycles, where transition metals participate in the synthesis. A variety of nitrogen sources, including amines, amides, hydrazones, pyrimidines, isocyanides, and copper nitrate, have been disclosed for the synthesis of diverse bioactive and pharmacologically interesting N-containing heterocycles under the participation of transition metals. The well-known nitrogen sources, such as amines and amides, were used for the construction of indoles, isatins, and quinolones. Dihydrophthalazines, isoquinolines, indazoles, and pyrazoles were obtained from hydrazones, while various pyrimidine-containing heterocycles were afforded through regioselective C-H functionalizations using pyrimidine as the directing group. Recent research has focused on the chemistry of isocyanides to achieve several kinds of heterocyclic compounds with high efficiency under the catalysis of transition metals (Pd, Rh, Mn, Cu), through oxidative cyanation reactions, sequential isocyanide insertions into C-H, N-H, or O-H bonds, and tandem radical annulation. More recently, an efficient route to isoxazolines has been reported using copper nitrate as a novel nitrogen source.