The Sec61 protein translocon is a multimeric complex that transports proteins across lipid bilayers. We discovered that the Sec61 subunit modulates cellular sensitivity to chemotherapeutic agents, particularly the platinum drugs. To investigate the mechanism, expression of Sec61 was constitutively knocked down in 2008 ovarian cancer cells. Sec61 knockdown (KD) resulted in 8-, 16.8-, and 9-fold resistance to cisplatin (cDDP), carboplatin, and oxaliplatin, respectively. Sec61 KD reduced the cellular accumulation of cDDP to 67% of that in parental cells. Baseline copper levels, copper uptake, and copper cytotoxicity were also reduced. Because copper transporters and chaperones regulate platinum drug accumulation and efflux, their expression in 2008 Sec61-KD cells was analyzed; ATP7A was found to be 2-to 3-fold overexpressed, whereas there was no change in ATP7B, ATOX1, CTR1, or CTR2 levels. Cells lacking ATP7A did not exhibit increased cDDP resistance upon knockdown of Sec61. Sec61-KD cells also exhibited altered ATP7A cellular distribution. We conclude that Sec61 modulates the cytotoxicity of many chemotherapeutic agents, with the largest effect being on the platinum drugs. This modulation occurs through effects of Sec61 on the expression and distribution of ATP7A, which was shown previously to control platinum drug sequestration and cytotoxicity.