Titanium dioxide with a mesoporous structure, when photoactivated in water, demonstrates an unprecedented photocatalytic activity, driven strongly by an adsorption degree of molecules onto the catalyst surface, which promotes a preferential conversion of a well-adsorbed molecule. This catalyzes a selective transformation of a well-adsorbed molecule into a less-adsorbed molecule, so-labeled "stick-and-leave" transformation, which promotes a direct hydroxylation of benzene to phenol, one of the most difficult synthetic reactions, with very high selectivity (>80%) and using water as a source of oxidant.
CRM1 plays an important role in the nuclear export of cargo proteins bearing nuclear exporting signal sequences. Leptomycin B (LMB), a well-known CRM1 inhibitor, possesses strong antitumor properties. However, its toxicity prevents it from being clinically useful. In this study, we demonstrate that a novel compound, CBS9106, inhibits CRM1-dependent nuclear export, causing arrest of the cell cycle and inducing apoptosis in a time-and dose-dependent manner for
Pancreatic beta-cells are susceptible to reactive oxygen species (ROS), which are known to be generated by high or low glucose (LG), hypoxic, or cytokine-producing conditions. When we cultured mouse beta-cell-derived MIN6 cells in a LG condition, we detected a significant generation of ROS, including hydrogen peroxide, which was comparable to the ROS production in hypoxic or cytokine-treated conditions. ROS accumulation induced by the LG culture led to cell death, which was prevented by the ROS scavengers N-acetylcysteine and manganese(III)tetrakis(4-benzoic acid) porphyrin. We next investigated the mechanism of stress-activated protein kinases (SAPKs), c-jun N-terminal kinase (JNK) and p38, in ROS-induced MIN6 cell death. Activation of p38 occurred immediately after the LG culture, whereas JNK activation increased slowly 8 h later. Adenoviral p38 expression decreased MIN6 cell death, whereas the JNK expression increased it. Consistently, blocking p38 activation by inhibitors increased beta-cell death, whereas JNK inhibitors decreased it. We then examined the role of MAPK phosphatases (MKPs) specific for stress-activated protein kinases in beta-cell death. We found that MKP-1 presented an increase in its oxidized product after the LG culture. ROS scavengers prevented the appearance of this oxidized product and JNK activation. Thus, ROS-induced MKP inactivation causes sustained activation of JNK, which contributes to beta-cell death. Adenoviral overexpression of MKP-1 and MKP-7 prevented the phosphorylation of JNK at 36 h after the LG culture, and decreased MIN6 beta-cell death. We suggest that beta-cell death is regulated by interactions between JNK and its specific MKPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.